miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export.
نویسندگان
چکیده
Skeletal muscle atrophy is prevalent in chronic diseases, and microRNAs (miRs) may play a key role in the wasting process. miR-23a was previously shown to inhibit the expression of atrogin-1 and muscle RING-finger protein-1 (MuRF1) in muscle. It also was reported to be regulated by cytoplasmic nuclear factor of activated T cells 3 (NFATc3) in cardiomyocytes. The objective of this study was to determine if miR-23a is regulated during muscle atrophy and to evaluate the relationship between calcineurin (Cn)/NFAT signaling and miR-23a expression in skeletal muscle cells during atrophy. miR-23a was decreased in the gastrocnemius of rats with acute streptozotocin-induced diabetes, a condition known to increase atrogin-1 and MuRF1 expression and cause atrophy. Treatment of C2C12 myotubes with dexamethasone (Dex) for 48 h also reduced miR-23a as well as RCAN1.4 mRNA, which is transcriptionally regulated by NFAT. NFATc3 nuclear localization and the amount of miR-23a decreased rapidly within 1 h of Dex administration, suggesting a link between Cn signaling and miR-23a. The level of miR-23a was lower in primary myotubes from mice lacking the α- or β-isoform of the CnA catalytic subunit than wild-type mice. Dex did not further suppress miR-23a in myotubes from Cn-deficient mice. Overexpression of CnAβ in C2C12 myotubes prevented Dex-induced suppression of miR-23a. Finally, miR-23a was present in exosomes isolated from the media of C2C12 myotubes, and Dex increased its exosomal abundance. Dex did not alter the number of exosomes released into the media. We conclude that atrophy-inducing conditions downregulate miR-23a in muscle by mechanisms involving attenuated Cn/NFAT signaling and selective packaging into exosomes.
منابع مشابه
Tiny transporters: how exosomes and calcineurin signaling regulate miR-23a levels during muscle atrophy. Focus on "miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export".
SKELETAL MUSCLE ATROPHY is characterized by an increase in protein degradation that is accomplished through a variety of cellular mechanisms. Significant attention has been given to the ubiquitin-proteasome pathway and to expression of the E3 ubiquitin ligases muscle-specific RING finger-1 (MuRF1) and atrogin-1/muscle atrophy F box (MAFbx) during muscle atrophy. The increased expression of thes...
متن کاملMiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling
TGF-β1-induced epithelial-mesenchymal transition (EMT) has been proved to be associated with metastasis of breast cancer cells. We attempted to detect a novel mechanism that microRNAs mediated the TGF-β1-induced EMT in the process of breast cancer metastasis. Here we reported that the expression of miR-23a was higher in breast cancer cells with high metastasis ability and patients with lymph no...
متن کاملThe Effect of Aerobic Training and Tribulus Terrestris Extract on Muscle Atrophy Indices and Oxidant-Pro-Oxidant Balance in Extensor Digitorum Longus Muscles of Type 2 Diabetic Desert Rats
Background & Aims: Performing normal daily activities requires sufficient muscle size and strength, and atrophy has a negative effect on the overall quality of life; So that the decrease in skeletal muscle mass leads to a decrease in human performance, long-term health and low quality of life. Diabetes is associated with the development of secondary complications in various organs, especially s...
متن کاملSerum miRNAs miR-23a, 206, and 499 as Potential Biomarkers for Skeletal Muscle Atrophy
Muscle biopsy has long been expected to be replaced by noninvasive biomarkers with diagnostic value and prognostic applications for muscle atrophy. Growing evidence suggests that circulating microRNAs (miRNAs) could act as biomarkers for numerous pathophysiological statuses. In the present study, our results showed that the serum levels of six muscle-specific miRNAs (miR-1/23a/133/206/208b/499)...
متن کاملThe Signature of MicroRNA Dysregulation in Muscle Paralyzed by Spinal Cord Injury Includes Downregulation of MicroRNAs that Target Myostatin Signaling
Spinal cord injury (SCI) results in muscle atrophy, reduced force generation and an oxidative-to-glycolytic fiber type shift. The mechanisms responsible for these alterations remain incompletely understood. To gain new insights regarding mechanisms involved in deterioration of muscle after SCI, global expression profiles of miRs in paralyzed gastrocnemius muscle were compared between sham-opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 306 6 شماره
صفحات -
تاریخ انتشار 2014